
PHYSICAL REVIEW E DECEMBER 1997VOLUME 56, NUMBER 6
Analytical approximation of the soliton solutions of the quintic complex
Ginzburg-Landau equation
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~Received 30 June 1997!

We have performed a theoretical study of the soliton fiber laser based on the quintic complex Ginzburg-
Landau equation~CGLE!. This study may also apply to soliton propagation in telecommunications systems.
We have developed a simple approach that allows us to obtain, in an approximate way, analytical expressions
for the stable pulselike solutions of the CGLE. The method also gives an accurate estimate of the region in the
parameter space where stable pulselike solutions exist. We also obtain that the minimum allowed value of the
peak amplitude of the soliton solutions depends solely on the relation between the linear loss term and the
quintic gain saturation term. The predictions are confirmed by numerical simulations.
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PACS number~s!: 42.65.Tg, 47.20.Ky, 42.55.Wd
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I. INTRODUCTION

Soliton generation in actively and passively mode lock
fiber lasers@1–4# is presently a very active area of researc
Fiber lasers with additive-pulse mode locking or nonline
polarization rotation@5–17# may be described by the com
plex Ginzburg-Landau equation~CGLE!. This equation also
applies when describing soliton propagation in optical fib
systems with linear and nonlinear gain and spectral filter
~such as communication links with lumped fast saturable
sorbers@18–25#!. Different forms of the CGLE have bee
used, including the cubic Ginzburg-Landau equation@26#,
cubic CGLE with saturation @7,9#, quintic CGLE
@5,22,24,27,28#, and more complicated models.

The quintic CGLE can be written in the form@24,27#

icz1
D

2
c tt1ucu2c5 idc1 i eucu2c1 ibc tt2nucu4c

1 imucu4c, ~1!

wherez is the propagation distance,t is the retarded time,c
is the normalized envelope of the electric field,D561 is
the chromatic dispersion coefficient,b stands for spectra
filtering (b.0), d is the linear gain or loss coefficient,e and
m represent nonlinear gain or loss~which describe, for in-
stance fast saturable absorption!, and n is the saturation of
the nonlinear refractive index. As long asn is small (un
u!1) its influence on the formation of stable pulselike so
tions is neglectable@29#; therefore, we shall considern50 in
the rest of the paper. The other quintic term being nega
(m,0) is generally, although not always@30#, necessary for
providing stability against the infinite growth expected fro
the cubic gain (e.0).

As is well known, in the anomalous dispersion regim
(D511) bright soliton solutions of the nonlinear Schr¨-
dinger equation~NLSE! exist. In this case, for very sma
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values of the coefficients on the right-hand side of Eq.~1!,
the solitary wave solutions of the CGLE withD511 are
close to the usual NLSE solitons. As a consequence, in
anomalous dispersion regime it is possible to study the m
properties of the solitonlike solutions of Eq.~1! by applying
the well-developed soliton perturbation theory of the NLS
@31,32#. This approach, however, cannot be used with n
mal dispersion@i.e., D521 in Eq.~1!#, since in this case no
solution of the NLSE in the form of a bright pulse exist
Furthermore, perturbation theory cannot be applied whenudu,
b, ueu, unu, andumu are not much less than 1.

The solitary wave solutions of the CGLE and their stab
ity have been analyzed recently in previous papers for
cases of anomalous@28,29# and normal dispersion@33#. Ana-
lytical, exact pulselike solutions of the quintic CGLE hav
been found in a few special cases and in general they
unstable. On the other hand, stable pulselike solutions h
been found numerically. Their existence for a wide interv
of values of the parameters of the quintic CGLE has be
shown recently@29,33#. However, numerical studies giv
only a partial picture of the problem as they must be co
ducted for a few values of the equation parameters. In a
tion, quite often one needs to fit the experimental data to
expected pulselike solution, which cannot be done when
analytical expression exists for it. Starting from the sta
pulselike solutions of the cubic CGLE forD511, which
have an analytical expression, in Sec. II we relate them to
stable pulselike solutions of the quintic CGLE and this
lows us to find an approximated expression for them.
expression for the lower boundary of the stability region
the plane (b,e) is obtained. The minimum allowed value o
the peak amplitude of the soliton solutions is found to d
pend exclusively ond/m and therefore is independent ofb
and e. We then extend the approach to the case of nor
dispersion. The analytical predictions of our approach
verified in Sec. III. Finally, Sec. IV summarizes the ma
results.
7288 © 1997 The American Physical Society
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II. ANALYTICAL APPROXIMATION

We first recall that the cubic CGLE@i.e., Eq. ~1! with
m5n50# possesses stable pulselike solutions only
D511, d50, ande andb related in the following way:

e5es5b
3A114b22D

4118b2
. ~2!

@The above equation defines a line in the plane (b,e) that we
shall call from now on lineS.# This solution is given by@28#

C0~ t,z!5A sech~Bt!exp$ id ln@sech~Bt!#%exp~2 ivz!,
~3!

where A is an arbitrary positive parameter, andd, v andA/B
are given by

d5
A114b22D

2b
, v52d

114b2

2b
B2, ~4!

A

B
5A~219b2!A114b2~A114b22D !

2b2~3A114b22D !
. ~5!

Equation~2! divides the plane (b,e) into two parts. Gen-
erally speaking, for (b,e) above the lineS, input pulses
grow indefinitely; below that line, spectral filtering dom
nates over the nonlinear gain and pulses decay when pr
gating. The presence of the quintic term saturating the n
linear gain (m,0) avoids the problem for points above th
line S and stable pulselike solutions are obtained in a w
region @29,33#, when d<0 ~which stabilizes the back
ground!.

We now assume that these stable solutions~more specifi-
cally, those called plain pulses@34#! belong to the same fam
ily as the solutions given by Eq.~3!, having approximately
the same form, and that the fact thatd, e2es, and m are
different from zero uniquely determines the value of the a
plitude A. Naturally, this approximation will be more accu
rate ase2es , d, andm tend to zero.

Introducing Eq.~3! into Eq. ~1!, one obtains

~e2es!uC0~ t !u21muC0~ t !u41d50 ~6!

@where we used the definitionC0(t,z)5C0(t)exp(2ivz)#.
Equation~6! cannot ever be satisfied for all values oft. Nev-
ertheless, as long asue2esu, m, andd are kept small, expres
sion ~6! is quite close to zero. In our approach we consid
that Eq.~6! is satisfied when averaging in time; for this ta
we choose the density of probability

p~ t !5
uC0~ t !u2

E
2`

`

uC0~ t !u2dt

. ~7!

It should be noted that this density of probability makes
rate of change of energy with respect toz zero, a condition
that must be fulfilled for any stationary solution@35#, i.e.,
r

a-
n-

e

-

r

e

d

dzE2`

`

ucu2 dt52E
2`

`

@ducu21eucu41mucu62buc tu2#dt

50. ~8!

Multiplying p(t) by Eq. ~6! and integrating in time, we
easily find the following expression forA2:

A25
25~e2es!25A~e2es!

2224dm/5

8m
, ~9!

which for dm!(e2es)
2 becomes

A252
5

4

e2es

m
. ~10!

Equation~9! serves also to estimate the lower limit of th
region at which stable pulselike solutions exist. The discrim
nant must be greater than or equal to zero for the solutio
exist. The minimum value of allowede becomes

emin5es1A24dm

5
, ~11!

which explains the numerical results shown in Fig. 11
Ref. @29#, namely, that in the plane (b,e) the lower limit of
the region at which stable pulselike solutions of the quin
CGLE are found is almost parallel to the lineS and that as
umu or udu increases, this lower limit also increases.

We also obtain that there exists a minimum value for
peak amplitude, which from Eqs.~9! and~11! is found to be

Amin
2 5A15

8

d

m
, ~12!

that is, the minimum value of the peak amplitude of t
soliton solutions is independent ofb ande, being determined
uniquely by the quotientd/m. Note that Eq.~12!, in combi-
nation with Eq.~5!, gives the allowed values of the pea
amplitude and the width of the stable soliton solutions.

III. NUMERICAL RESULTS

In this section we compare the approximated results gi
by our approach with the exact ones found numerically f
lowing the method described in Ref.@29#. We have concen-
trated our efforts on the anomalous dispersion regime wh
the solutions of arbitrary amplitude@Eq. ~3!# are stable. We
found excellent agreement between the approximated and
exact results. In addition, the predictions of our approxim
tion are confirmed by the numerical experiments. Finally,
check the validity of our approximation for the case of no
mal dispersion.

A. Anomalous dispersion regime

Figure 1~a! shows a comparison between the peak int
sity for the exact pulselike solutions of the quintic CGL
found numerically following the method described in Re
@29# and the values predicted by Eqs.~9! and~10! vs e. The
dotted lines are for Eq.~10!, the dashed lines for Eq.~9!, and
the symbols for the exact solutions. Circles are forb50.1,
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pentagons forb50.2, squares forb50.5, and triangles for
b51. Two sets of almost parallel lines are obtained
m520.02 andm520.05 respectively as predicted by E
~10!. Figure 1~b! shows a magnification of Fig. 1~a! around
the smallest allowed values ofe, showing the departure o
the curves from a straight line. In both figures the verti
lines are fore5es . The matching between the exact resu
and the approximated ones is extraordinarily good, even
high values ofe2es . Similarly, Fig. 2 shows the peak in
tensity of the stable pulselike solutions versus~a! m and ~b!
b for different values ofe, showing an excellent coincidenc
between the exact results and those obtained through
approach.

Figure 3 shows~a! the amplitude and~b! phase of the
exact pulselike solution and the one expressed by Eq.~3!
with A given by Eq.~9!. The exact solution is shown as
dashed line and the approximated one as a dotted line.
values of the parameters ared520.01,m520.05,
b50.1 (⇒es50.049), ande50.15, 0.5, and 0.8. The exac
and approximated pulse shapes are indistinguishable fo
three values ofe, while the phases are identical for the sma
est value ofe and, as one would expect, the differenc
increase ase2es increases. The phase chirp in the center
the pulse is larger than the predicted one.

The situation is similar for other values of the spect
filtering. Figure 4 is the same as Fig. 3, but forb51 and
e50.4, 0.6, and 0.8. For the smallest value ofe the agree-

FIG. 1. Numerical~symbols! and analytical results as given b
Eqs.~9! ~dashed lines! and~10! ~dotted lines! for the peak intensity
of the solutions of the quintic CGLE vse. The vertical lines are for
e5es . Circles are forb50.1, pentagons forb50.2, squares for
b50.5, and triangles forb51. The two sets of almost parallel line
correspond tom520.02 and20.05, respectively. In all the case
d520.01. The ellipses on the solid line embrace the two sets
curves corresponding to the two values ofm considered, which are
written close to them.
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FIG. 2. Peak intensity of the stable pulselike solutions versus~a!
m and~b! b for different values ofe. The continuous lines stand fo
the results of our approximation and the filled symbols for the ex
ones.

FIG. 3. ~a! Field amplitude and~b! phase of the exact~dashed
lines! and approximated~dotted lines! solutions of the quintic
CGLE for three values ofe: 0.15, 0.5, and 0.85. The rest of th
parameters have the following values:b50.1, m520.05, and
d520.01. In~a! a vertical shift of 0.5 between consecutive profil
has been applied for the sake of clarity.
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ment is complete. As we increase the value of the cu
nonlinear gain the exact pulse profiles become slightly wi
than the approximated ones, whereas the phases still sh
remarkable coincidence.

Our approach predicts a lower boundary for the existe
of soliton solutions. The qualitative agreement with previo
results forn relatively large (n50.1) was already mentione
above. We look now for the quantitative agreement wh
n50. This limit is then given by Eq.~11!. In Fig. 5 we show
the lineS ~solid line! and the above-mentioned equation f
(d,m)5 (20.01,20.05) ~dashed line!, (20.05,20.05) ~dot-

FIG. 4. Same as Fig. 3, but fore50.4, 0.6, and 0.8 andb51.

FIG. 5. The solid line corresponds to the lineS @Eq. ~2!#, the
dashed, dotted, and dot-dashed lines to Eq.~11! for (d,m)5
(20.01,20.05), (20.05,20.05), and (20.15,20.15), respec-
tively. The symbols are the values obtained numerically for
lower limit of the stability region of the quintic CGLE. The ellips
on the dotted line embraces the two curves corresponding to
same value ofm520.05.
ic
r
a

e
s

n

ted line!, and (20.15,20.15) ~dot-dashed line!. The solid
symbols represent the corresponding lower limits found
merically. We can see that even for high values ofudu and
umu our approach gives this limit with great accuracy. No
that the goodness of Eq.~11! could be appreciated already i
Fig. 1~b!: symbols representing exact solutions and dot
lines representing the approximated ones start to emerg
approximately the same values ofe.

We finally check the minimum value of the peak amp
tude as given by Eq.~12!. The above results already indica
that this equation is valid. In them the valued/m was around
1. We have extended the range of values of this ratio fr
1/15 to 15. Figure 6 showsAmin vs d/m, as given by Eq.~12!
as a solid line, and five intervals for the exact values ofAmin
calculated numerically. The intervals mean that the value
Amin for different values ofb are inside this interval. This
small dispersion in the values ofAmin with b could even be
due to the numerical accuracy used when calculating th
In any case it is very small. Once again the approach pred
the correct pulselike solution in this very broad interval
values ofd/m ~note the logarithmic scale on the x axis!.

FIG. 7. Same as Fig. 5, but for normal dispersion (D521).

e

he

FIG. 6. Minimum value of the peak amplitude vsd/m as given
by Eq.~12! ~solid line!. The small intervals represent the numeric
results obtained for the values of (d,m) written close to them. The
width of the intervals represents the small dispersion ofAmin ob-
tained whenb varies from 0 to 1. Ford/m51 there are two over-
imposed intervals, which correspond tod520.05 and20.15, re-
spectively.
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B. Normal dispersion regime

In contrast to what happens in the anomalous disper
regime, the solutions of arbitrary amplitude of the cub
CGLE as given by Eq.~3! with D521 are unstable. If we
perturb them, they either grow indefinitely or continuous
decay@33#. The indefinite growth can be stopped if the no
linear gain saturates~by introducingm,0). All the above
process can be repeated in the same way. The approxim
does not work as well in the case of anomalous dispers
but still can be helpful.

Figure 7 shows the lineS for normal dispersion~continu-
ous line!, the predicted lower limit@Eq. 11# for d520.01
~dashed line! and d520.05 ~dotted line!, and the corre-
sponding numerical results~solid symbols!. For b close to
zero, no exact pulselike solution is found, but also the a
lytical approach would give an infinite width. Both resul
are essentially the same.

However, when comparing the exact form of the fie
amplitude and phase of the solution with the approxima
one, the agreement becomes much worse. Figure 8 is
same as Fig. 4, but for normal dispersion. Qualitatively,
approach reproduces the main features of the solution, b
predicts pulses of lower peak amplitude and smaller wi
than the exact ones.

FIG. 8. Same as Fig. 4, but for normal dispersion (D521).
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IV. CONCLUSIONS

In conclusion, we have shown that, in the anomalous d
persion regime, the stable pulselike solutions of the quin
CGLE belong to the same family of solutions as the arbitr
amplitude solutions of the cubic CGLE and therefore can
well approximated by them. The quintic term and the exc
linear loss fix the unique valid amplitude for each giv
value of the equation coefficients. This has allowed us
obtain in an approximate way a simple analytical express
for the stable pulselike solutions of the quintic CGLE. T
approximation is valid for small values ofud (<0)u,
um (,0)u, ande2es (.0). However, we find that even fo
large values ofe2es the predicted amplitude coincides wit
the exact one. The width and the phase chirp start to dive
before. Nevertheless, if a greater accuracy were neces
the approximated solutions would constitute a valuable
tial condition for finding the exact ones, either using a rela
ation method, the shooting method, or the one used h
@29#.

In addition, our approach provides an accurate expres
for the lower boundary of existence of soliton solutions
the plane (b,e). This boundary is found to be a paralle
curve to the lineS @Eq. ~2!# separated from it a distance th
uniquely depends on the productdm. In addition, the exis-
tence of a minimum peak amplitude is revealed, which
pends exclusively on the relation between the linear exc
loss and the quintic saturating gain term (d/m). These pre-
dictions are totally corroborated by our numerical simu
tions and remain valid even for relative large values ofudu
and umu. On the other hand, the relation between the pe
amplitude and the width (A/B) is found to depend only on
the spectral filtering and on the fiber dispersion. Therefo
our results can be very useful in determining the value
system parameters required to obtain solitons with a gi
width and amplitude.

We have applied the approach to the normal dispers
regime, where the arbitrary amplitude solutions of the cu
CGLE are unstable. In this case the stable solutions of
quintic CGLE cannot be well approximated by them and o
approach only reproduces qualitatively the main features
the stable pulselike solutions. The lower boundary of ex
tence of soliton solutions in the plane (b,e) is nevertheless
provided with high precision.
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