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Analytical approximation of the soliton solutions of the quintic complex
Ginzburg-Landau equation
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We have performed a theoretical study of the soliton fiber laser based on the quintic complex Ginzburg-
Landau equatiofCGLE). This study may also apply to soliton propagation in telecommunications systems.
We have developed a simple approach that allows us to obtain, in an approximate way, analytical expressions
for the stable pulselike solutions of the CGLE. The method also gives an accurate estimate of the region in the
parameter space where stable pulselike solutions exist. We also obtain that the minimum allowed value of the
peak amplitude of the soliton solutions depends solely on the relation between the linear loss term and the
quintic gain saturation term. The predictions are confirmed by numerical simulations.
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PACS numbgs): 42.65.Tg, 47.20.Ky, 42.55.wd

I. INTRODUCTION values of the coefficients on the right-hand side of Hq,
the solitary wave solutions of the CGLE wilb=+1 are
Soliton generation in actively and passively mode lockecclose to the usual NLSE solitons. As a consequence, in the
fiber laserd1—4] is presently a very active area of research.anomalous dispersion regime it is possible to study the main
Fiber lasers with additive-pulse mode locking or nonlinearproperties of the solitonlike solutions of E() by applying
polarization rotatior{5-17] may be described by the com- the well-developed soliton perturbation theory of the NLSE
plex Ginzburg-Landau equatid@GLE). This equation also [31,32. This approach, however, cannot be used with nor-
applies when describing soliton propagation in optical fibermal dispersiori.e.,D=—1 in Eq.(1)], since in this case no
systems with linear and nonlinear gain and spectral filteringsolution of the NLSE in the form of a bright pulse exists.
(such as communication links with lumped fast saturable abFurthermore, perturbation theory cannot be applied wiagn
sorbers[18—25). Different forms of the CGLE have been B, |€|, |v|, and|u| are not much less than 1.

used, including the cubic Ginzburg-Landau equati@6], The solitary wave solutions of the CGLE and their stabil-
cubic CGLE with saturation [7,9], quintic CGLE ity have been analyzed recently in previous papers for the
[5,22,24,27,28 and more complicated models. cases of anomaloyg8,29 and normal dispersiof83]. Ana-

The quintic CGLE can be written in the forf24,27] lytical, exact pulselike solutions of the quintic CGLE have

been found in a few special cases and in general they are

) D 0 ] 0 L 4 unstable. On the other hand, stable pulselike solutions have
i, + 5‘”“"”' Y=i8y+ielyl?y+iBy—v|Y|*y been found numerically. Their existence for a wide interval
of values of the parameters of the quintic CGLE has been
+iplylty, (1)  shown recently[29,33. However, numerical studies give

only a partial picture of the problem as they must be con-
wherez is the propagation distanceijs the retarded timej  ducted for a few values of the equation parameters. In addi-
is the normalized envelope of the electric fiell==1 is  tion, quite often one needs to fit the experimental data to an
the chromatic dispersion coefficieng, stands for spectral expected pulselike solution, which cannot be done when no
filtering (8>0), d is the linear gain or loss coefficiertand  analytical expression exists for it. Starting from the stable
wn represent nonlinear gain or logwhich describe, for in-  pulselike solutions of the cubic CGLE fdd=+1, which
stance fast saturable absorpfioand v is the saturation of have an analytical expression, in Sec. |l we relate them to the
the nonlinear refractive index. As long asis small (v  stable pulselike solutions of the quintic CGLE and this al-
|<1) its influence on the formation of stable pulselike solu-lows us to find an approximated expression for them. An
tions is neglectablg29]; therefore, we shall consider=0 in  expression for the lower boundary of the stability region in
the rest of the paper. The other quintic term being negativéhe plane 8,¢€) is obtained. The minimum allowed value of
(1< 0) is generally, although not alway30], necessary for the peak amplitude of the soliton solutions is found to de-
providing stability against the infinite growth expected from pend exclusively onS/u and therefore is independent gf

the cubic gain é>0). and e. We then extend the approach to the case of normal
As is well known, in the anomalous dispersion regimedispersion. The analytical predictions of our approach are
(D=+1) bright soliton solutions of the nonlinear Schro verified in Sec. lll. Finally, Sec. IV summarizes the main

dinger equationNLSE) exist. In this case, for very small results.
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II. ANALYTICAL APPROXIMATION

d oo o]
— 2 dt=2j S| y|?+ €| |+ 6_ 2]dt
We first recall that the cubic CGLE.e., Eq. (1) with dzﬁmllﬁ' ﬂo[ |91+ el 4wl 9= Blinl"]

u=v=0] possesses stable pulselike solutions only for

D=+1, 6=0, ande and g related in the following way: =0. ®

Multiplying p(t) by Eg. (6) and integrating in time, we

c—emB 3y1+4p°—D 2 easily find the following expression fak?:
) 4+188% )
AZ_—5(E— €5)—5V(e—€5)>—245ul5 ©
[The above equation defines a line in the plafege] that we 8u ’
shall call from now on lineS.] This solution is given by28] ) )
which for Su<(e— €5) becomes
Po(t,z)=A sechiBt)exp{idIn[ secl{Bt)]}exp —iwz), 5 e
€) A= — i S (10)

where A is an arbitrary positive parameter, ahd andA/B Equation(9) serves also to estimate the lower limit of the

are given by region at which stable pulselike solutions exist. The discrimi-
nant must be greater than or equal to zero for the solution to
/ 2 2
_ 1+45°-D __ 1+45° exist. The minimum value of allowed becomes
, d B-, (4)
2p 2p
245u
> > > €min— €sT "5 (11
A [(2+9B%)V1+4B%(J1+4B%~D) ©
B 28%(3VJ1+4B°-D) ' which explains the numerical results shown in Fig. 11 of

Ref.[29], namely, that in the plane3;€) the lower limit of
Equation(2) divides the planeg, €) into two parts. Gen- the region at which stable pulselike solutions of the quintic
erally speaking, for 8,€) above the lineS, input pulses CGLE are found is almost parallel to the liSeand that as
grow indefinitely; below that line, spectral filtering domi- |u| or || increases, this lower limit also increases.
nates over the nonlinear gain and pulses decay when propa- We also obtain that there exists a minimum value for the
gating. The presence of the quintic term saturating the nonpeak amplitude, which from Eq€9) and(11) is found to be
linear gain (w<<0) avoids the problem for points above the

line S and stable pulselike solutions are obtained in a wide A2 — 154 (12)
region [29,33, when <0 (which stabilizes the back- min 8 u’
ground.

We now assume that these stable solutiomere specifi- that is, the minimum value of the peak amplitude of the
cally, those called plain puls¢84]) belong to the same fam- soliton solutions is independent gfande, being determined
ily as the solutions given by Ed3), having approximately ~uniquely by the quotiend/«. Note that Eq(12), in combi-
the same form, and that the fact théit e—e;, and u are nation with Eq.(5), gives the allowed values of the peak
different from zero uniquely determines the value of the am-amplitude and the width of the stable soliton solutions.
plitude A. Naturally, this approximation will be more accu-
rate ase—eg, &, andu tend to zero. IIl. NUMERICAL RESULTS

Introducing Eq.(3) into Eg. (1), one obtains ) . . .
9 Ea(3) a1 In this section we compare the approximated results given

©6) by our approach with the exact ones found numerically fol-

lowing the method described in R¢R9]. We have concen-
trated our efforts on the anomalous dispersion regime where
the solutions of arbitrary amplitudéqg. (3)] are stable. We
found excellent agreement between the approximated and the
exact results. In addition, the predictions of our approxima-
tion are confirmed by the numerical experiments. Finally, we
check the validity of our approximation for the case of nor-
mal dispersion.

(e—€9)|Wo(t) |2+ u|Wo(t)|*+6=0

[where we used the definitioW y(t,z) =V y(t)exp(-iwz)].
Equation(6) cannot ever be satisfied for all valuestoNev-
ertheless, as long ds— €4, u, and s are kept small, expres-
sion (6) is quite close to zero. In our approach we conside
that Eq.(6) is satisfied when averaging in time; for this task
we choose the density of probability

2
p(t)= x|\1'0(t)| _ 7) A. Anomalous dispersion regime
f | o(t)|dt _ Figure Xa) shows a C(_)mpariso_n between the_ p_eak inten-
—o sity for the exact pulselike solutions of the quintic CGLE

found numerically following the method described in Ref.
It should be noted that this density of probability makes thg29] and the values predicted by Ed9) and(10) vs €. The
rate of change of energy with respectaaero, a condition dotted lines are for Eq10), the dashed lines for E¢9), and
that must be fulfilled for any stationary soluti¢85], i.e., the symbols for the exact solutions. Circles are fzr 0.1,



7290
F T T é
0F () A4
N // /G/A‘
[ B=0.1.0.2,0.5.1 F%6x
o 60 .
B O~ s
8 p=-0.02 70};/;/)
N L e .
> 40 P22 n=-0.05
- G x
S
20 oo p” Lt
L g//ig’/)’# &%ﬁ
e .ﬁ%‘f’g@f 5=-0.01
0 0.5 1 1.5
20""I""I""I"}';B""
I 7/ A
@ /
- (b) // /// m//
15 F S ¥ 4
™ [ : P A4
§ : H p/' /// '/I/ ‘///
10F I,’/ ,4/ 7 ,‘1’,@:;’3
ORI E e
= RN
5__ E i Qv’ii ,»@é@@@’,m” L
| ,/%; : #/’]A&Af
NI SR
0O 01 02 03 04 05
€

¥ (0)|*

J. M. SOTO-CRESPO AND LUIS PESQUERA

20

0 02 04 06 08

B

1

FIG. 2. Peak intensity of the stable pulselike solutions vefaus

n and(b) B for different values ok. The continuous lines stand for
FIG. 1. Numerical(symbol3 and analytical results as given by the results of our approximation and the filled symbols for the exact

Egs.(9) (dashed lingsand(10) (dotted line$ for the peak intensity
of the solutions of the quintic CGLE ws The vertical lines are for
e=¢€,. Circles are for3=0.1, pentagons fog=0.2, squares for
B=0.5, and triangles foB= 1. The two sets of almost parallel lines
correspond tqu=—0.02 and— 0.05, respectively. In all the cases
6=—0.01. The ellipses on the solid line embrace the two sets of
curves corresponding to the two valuesiotonsidered, which are
written close to them.

pentagons foB=0.2, squares fog=0.5, and triangles for
B=1. Two sets of almost parallel lines are obtained for
pu=—0.02 andu= —0.05 respectively as predicted by Eg.
(10). Figure 1b) shows a magnification of Fig.(4) around

the smallest allowed values ef showing the departure of
the curves from a straight line. In both figures the vertical
lines are fore= €. The matching between the exact results
and the approximated ones is extraordinarily good, even for
high values ofe—e5. Similarly, Fig. 2 shows the peak in-
tensity of the stable pulselike solutions vergasu and (b)

B for different values ok, showing an excellent coincidence
between the exact results and those obtained through our
approach.

Figure 3 showda) the amplitude andb) phase of the
exact pulselike solution and the one expressed by (By.
with A given by Eq.(9). The exact solution is shown as a
dashed line and the approximated one as a dotted line. The
values of the parameters areéd=—0.01,u=—0.05,
B=0.1 (=€,=0.049), ande=0.15, 0.5, and 0.8. The exact
and approximated pulse shapes are indistinguishable for the
three values o, while the phases are identical for the small-
est value ofe and, as one would expect, the differences

ones.
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FIG. 3. (a) Field amplitude andb) phase of the exadtlashed

increase ag— € increases. The phase chirp in the center Ofjineg and approximateddotted line$ solutions of the quintic

the pulse is larger than the predicted one.

CGLE for three values ot: 0.15, 0.5, and 0.85. The rest of the

The situation is similar for other values of the spectralparameters have the following value=0.1, x=—0.05, and

filtering. Figure 4 is the same as Fig. 3, but {81 and
€=0.4, 0.6, and 0.8. For the smallest valueeothe agree-

6= —0.01. In(a) a vertical shift of 0.5 between consecutive profiles
has been applied for the sake of clarity.
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FIG. 6. Minimum value of the peak amplitude ¥éu as given
by Eq.(12) (solid line). The small intervals represent the numerical
results obtained for the values of,) written close to them. The
width of the intervals represents the small dispersioAgf, ob-
tained wheng varies from 0 to 1. Fob/u=1 there are two over-
imposed intervals, which correspond #e= —0.05 and—0.15, re-
spectively.

arg(¥ )

Y A N

w

0
t ted line, and (—0.15-0.15) (dot-dashed line The solid
symbols represent the corresponding lower limits found nu-
merically. We can see that even for high valueg &f and
|u| our approach gives this limit with great accuracy. Note
. . _that the goodness of E{L1) could be appreciated already in
ment is complete. As we increase the value of the cubigg 1. symbols representing exact solutions and dotted
nonlinear gain the exact pulse profiles become slightly widefjag representing the approximated ones start to emerge at
than the approximated ones, whereas the phases still ShOWa"prroximately the same values af
remarkable coincidence. _ We finally check the minimum value of the peak ampli-
Our approach predicts a lower boundary for the existencg,qe a5 given by Eq12). The above results already indicate
of soliton solutions. The qualitative agreement with previousy, 4t this equation is valid. In them the valdtu was around
results forv relatively large ¢=0.1) was already mentioned 1 \ye have extended the range of values of this ratio from
above. V.\/e-lo-ol-< now fqr the quantitative f'igreement when /15 10 15. Figure 6 shows,, vs 8/ ., as given by Eq(12)
v=0. This limit is then given by Eq11). In Fig. 5we show 54 5 5olid line, and five intervals for the exact valueAgf,
the lineS (solid ling) and the above-mentioned equation for 5|0 jated numerically. The intervals mean that the values of
(6,)= (—0.01,-0.05) (dashed ling (—0.05-0.05)(dot- A _ for different values ofg are inside this interval. This
small dispersion in the values &%, with 8 could even be
06— 71— due to the numerical accuracy used when calculating them.

JREY
W=-0.15 ‘,gz‘_'(‘) 15 In any case it is very small. Once again the approach predicts
15 .

FIG. 4. Same as Fig. 3, but fer=0.4, 0.6, and 0.8 ang=1.

05r R the correct pulselike solution in this very broad interval of
04 - values of 8/ (note the logarithmic scale on the x akis
w 03¢ 0.5 T B R
02 04f  5=-0.05" e
T e 8200.01
: /,r
0.1 03fF 7 _Tmes .
0 w /
02F 40,05 ]
AA D=-1
0.1/ 5
FIG. 5. The solid line corresponds to the li8gEq. (2)], the i
dashed, dotted, and dot-dashed lines to ELl) for (&,u)= 0 L
(_001,_005), (_005,_005), and 6015,_015), respec- 0 02 04 06 08 1
tively. The symbols are the values obtained numerically for the B

lower limit of the stability region of the quintic CGLE. The ellipse
on the dotted line embraces the two curves corresponding to the
same value ofx= —0.05. FIG. 7. Same as Fig. 5, but for normal dispersi@n=—1).



7292 J. M. SOTO-CRESPO AND LUIS PESQUERA 56

IV. CONCLUSIONS

SprorTrpTr T
4F (a)—j In conclusion, we have shown that, in the anomalous dis-
L ] persion regime, the stable pulselike solutions of the quintic
— 3F B=1 E CGLE belong to the same family of solutions as the arbitrary
E > E b & H=-0.05 3 amplitude solutions of the cubic CGLE and therefore can be
r g \ 5=-0.01 1 well approximated by them. The quintic term and the excess
1) ST (S SR linear loss fix the unique valid amplitude for each given
- O — value of the equation coefficients. This has allowed us to
e e mme e EE— obtain in an approximate way a simple analytical expression
-12 -6 0 6 12 for the stable pulselike solutions of the quintic CGLE. The
t approximation is valid for small values ofé (<0)|,
6 e |u (<0)|, ande— e (>0). However, we find that even for
5 1 large values ok — ¢, the predicted amplitude coincides with
3 b b the exact one. The width and the phase chirp start to diverge
0 [ ] before. Nevertheless, if a greater accuracy were necessary,
B 0 = . the approximated solutions would constitute a valuable ini-
50 C N tial condition for finding the exact ones, either using a relax-
o 3 C / ] ation method, the shooting method, or the one used here
3 y ,_ ] [29].
- i ;’ [ ] In addition, our approach provides an accurate expression
—6 bl e b for the lower boundary of existence of soliton solutions in
-2 -6 0 6 12 the plane B,€). This boundary is found to be a parallel
t curve to the lineS [Eq. (2)] separated from it a distance that
uniguely depends on the produéf.. In addition, the exis-
FIG. 8. Same as Fig. 4, but for normal dispersi@n<—1). tence of a minimum peak amplitude is revealed, which de-
pends exclusively on the relation between the linear excess
B. Normal dispersion regime loss and the quintic saturating gain terd &). These pre-

In contrast to what happens in the anomalous dispersio
regime, the solutions of arbitrary amplitude of the cubic
CGLE as given by Eq(3) with D=—1 are unstable. If we
perturb them, they either grow indefinitely or continuously
decay[33]. The indefinite growth can be stopped if the non-
linear gain saturate®y introducingu<0). All the above
process can be repeated in the same way. The approximati
does not work as well in the case of anomalous dispersioﬁ’,v
but still can be helpful.

Figure 7 shows the lin& for normal dispersioricontinu-

ﬁictions are totally corroborated by our numerical simula-
lons and remain valid even for relative large valued &f
and|u|. On the other hand, the relation between the peak
amplitude and the widthA/B) is found to depend only on
the spectral filtering and on the fiber dispersion. Therefore,
our results can be very useful in determining the value of
&){stem parameters required to obtain solitons with a given
Idth and amplitude.

We have applied the approach to the normal dispersion
regime, where the arbitrary amplitude solutions of the cubic
; ; L CGLE are unstable. In this case the stable solutions of the
ous ling, the predicted lower limi{Eq. 1 for o= -0.01 quintic CGLE cannot be well approximated by them and our

(dashed ling and 6= —0.05 (dotted ling, and the corre- approach only reproduces qualitatively the main features of
sponding numerical resulisolid symbol3. For £ close to the stable pulselike solutions. The lower boundary of exis-

zero, no exact pulselike solution is found, but also the anac, - of soliton solutions in the plan . thel
lytical approach would give an infinite width. Both results : o . plang (€) is nevertheless
are essentially the same. provided with high precision.

However, when comparing the exact form of the field
amplitude and phase of the solution with the approximated
one, the agreement becomes much worse. Figure 8 is the This work was supported by the Comunidad de Madrid
same as Fig. 4, but for normal dispersion. Qualitatively, ourunder Contract No. 06T/039/96 and by the CICyT under
approach reproduces the main features of the solution, but €ontract No. TIC95-0563. Part of this research was done
predicts pulses of lower peak amplitude and smaller widthwhile J.M.S.C was at the University of Cantabria. Their hos-
than the exact ones. pitality is appreciated.
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